Control of zinc oxide nanowire array properties with electron beam lithography templating for PV applications

نویسندگان

  • Samuel M. Nicaise
  • Jayce J. Cheng
  • Amirreza Kiani
  • Silvija Gradečak
چکیده

Hydrothermally synthesized zinc oxide nanowire arrays have been used as nanostructured acceptors in emerging photovoltaic (PV) devices. The nanoscale dimensions of such arrays allow for enhanced charge extraction from PV active layers, but the device performance critically depends on the nanowire array pitch and alignment. In this study, we templated hydrothermally-grown ZnO nanowire arrays via high-resolution electron-beam-lithography defined masks, achieving the dual requirements of high-resolution patterning at a pitch of several hundred nanometers, while maintaining hole sizes small enough to control nanowire array morphology. We investigated several process conditions, including the effect of annealing sputtered and spincoated ZnO seed layers on nanowire growth, to optimize array property metrics – branching from individual template holes and off-normal alignment. We found that decreasing template hole size decreased branching prevalence but also reduced alignment. Annealing seed layers typically improved alignment, and sputtered seed layers yielded nanowire arrays superior to spincoated seed layers. We show that these effects arose from variation in the size of the template holes relative to the ZnO grain size in the seed layer. The quantitative control of branching and alignment of the nanowire array that is achieved in this study will open new paths toward engineering more efficient electrodes to increase photocurrent in nanostructured PVs. This control is also applicable to inorganic nanowire growth in general, nanomechanical generators, nanowire transistors, and surface-energy engineering.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Patterned growth of horizontal ZnO nanowire arrays.

We report an approach to fabricating patterned horizontal ZnO nanowire arrays with a high degree of control over their dimensionality, orientation, and uniformity. Our method combines electron beam lithography and a low temperature hydrothermal decomposition. This approach opens up possibilities to fabricate ZnO NW array based strain and force sensors, two-dimensional photonic crystals, integra...

متن کامل

Ordered nanowire array blue/near-UV light emitting diodes.

ZnO-based light emitting diodes (LEDs) have been considered as a potential candidate for the next generation of blue/ near-UV light sources, [ 1 ] due to a direct wide bandgap energy of 3.37 eV, a large exciton binding energy of 60 meV at room temperature, and several other manufacturing advantages of ZnO. [ 2 ] While the pursuit of stable and reproducible p-ZnO is still undergoing, [ 3,4 ] het...

متن کامل

Synthesis, Characterization and Application of Zinc Oxide with Micro Polyhedral and Nano Plate Morphologies for Simultaneous Decolorization of Two- dye Mixture in Wastewater

In this work, growth and assembly of the micro polyhedral zinc oxide was performed using airbubble assisted Triton X100, as a templating agent. In absence of air bubbling in the reactionsystem the nano plate zinc oxide was synthesized. The prepared samples were characterized by Xraydiffraction (XRD), field emission scanning electron microscopy (FE-SEM) and UV-Visspectrop...

متن کامل

In situ TEM and energy dispersion spectrometer analysis of chemical composition change in ZnO nanowire resistive memories.

Resistive random-access memory (ReRAM) has been of wide interest for its potential to replace flash memory in the next-generation nonvolatile memory roadmap. In this study, we have fabricated the Au/ZnO-nanowire/Au nanomemory device by electron beam lithography and, subsequently, utilized in situ transmission electron microscopy (TEM) to observe the atomic structure evolution from the initial s...

متن کامل

Electron beam lithography patterning of sub-10 nm line using hydrogen silsesquioxane for nanoscale device applications

We investigated novel patterning techniques to produce ultrafine patterns for nanoscale devices. Hydrogen silsesquioxane HSQ was employed as a high-resolution negative tone inorganic electron beam resist. The nanoscale patterns with sub-10 nm linewidth were successfully formed. A trimming process of HSQ by the reactive ion etcher RIE played an important role for the formation of 5 nm nanowire p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014